This article was downloaded by:
On: 25 January 2011
Access details: Access Details: Free Access
Publisher Taylor \& Francis
Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 3741 Mortimer Street, London W1T 3JH, UK

Journal of Macromolecular Science, Part A
Publication details, including instructions for authors and subscription information:
http://www.informaworld.com/smpp/title content=t713597274

Antepenultimate Copolymer Composition Equation
George E. Ham ${ }^{\text {a }}$
${ }^{\text {a }}$ CIBA-GEIGY Corporation Ardsley, New York

To cite this Article Ham, George E.(1971) 'Antepenultimate Copolymer Composition Equation', Journal of Macromolecular Science, Part A, 5: 2, 453-458
To link to this Article: DOI: 10.1080/00222337108069391
URL: http://dx.doi.org/10.1080/00222337108069391

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf
This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.
The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

Antepenultimate Copolymer Composition Equation

GEORGE E. HAM

CIBA-GEIGY Corporation
Ardsley, New York 10502

SUMMARY

A new reduced copolymer composition equation weighing the effects of units through the antepenultimate is derived for the first time. The simplification obtained is placed into context with previously published work.

This paper reports the derivation of a simplified binary copolymer composition equation including contributions from all antepenultimate units. Derivations of antepenultimate copolymer equations have been previously reported with certain simplifying assumptions [1] or with excessive complexity [2-4].

The crux of the problem is the derivation of expressions for $\mathbf{P}_{\mathrm{ab}}, \mathrm{P}_{\mathrm{baa}}$, $\mathrm{P}_{\mathrm{bba}}$, and $\mathrm{P}_{\mathrm{abb}}$, weighing antepenultimate unit contributions, for substitution in the equations [1] which weigh penultimate unit contributions.

$$
\begin{align*}
& P_{a b}=\frac{P_{a b}}{P_{a a b}+P_{b a a}} \tag{1}\\
& P_{b a}=\frac{P_{b b a}}{P_{b b a}+P_{a b b}} \tag{2}
\end{align*}
$$

Suitable expressions for $\mathrm{P}_{\mathrm{aab}}$ and $\mathrm{P}_{\mathrm{bba}}$ were offered but $\mathrm{P}_{\mathrm{baa}}$ and $\mathrm{P}_{\mathrm{abb}}$ may have been oversimplified [1]. Ito and Yamashita [3] offered overly complex expressions for $\mathrm{P}_{\text {baa }}$ and $\mathrm{P}_{\mathrm{abb}}$, but correctly pointed out that they could not be derived in the simple way possible for $\mathrm{P}_{\mathrm{aab}}$ and $\mathrm{P}_{\mathrm{bba}}$. In their derivation Ito and Yamashita made use of their Eqs. (2.6) and (2.7).

$$
\begin{align*}
& P_{3}\{B A A\}=P_{4}\{A B A A\}+P_{4}\{B B A A\} \tag{3}\\
& P_{3}\{A B B\}=P_{4}\{A A B B\}+P_{4}\{B A B B\} \tag{4}
\end{align*}
$$

It has now been found possible to derive expressions for $P_{b a a}$ and $P_{a b b}$ by invoking the principle of sequence reversibility [1]. Thus

$$
\begin{equation*}
\mathbf{P}\{\mathbf{B B A B A}\}=\mathbf{P}\{\mathbf{A B A B B}\} \tag{5}
\end{equation*}
$$

Such sequence probabilities may be expressed in terms of the probability of finding an initial sequence multiplied by conditional probabilities.

$$
\begin{equation*}
\mathbf{P}\{\mathrm{BBA}\} \mathbf{P}_{\mathrm{bbab}} \mathbf{P}_{\mathrm{bbaba}}=\mathbf{P}\{\mathrm{AB}\} \mathbf{P}_{\mathrm{aba}} \mathbf{P}_{\mathrm{abab}} \mathbf{P}_{\mathrm{ababb}} \tag{6}
\end{equation*}
$$

Assuming

$$
\begin{equation*}
\mathbf{P}\{\mathbf{B B A}\}=\mathbf{P}\{\mathbf{A B B}\} \tag{7}
\end{equation*}
$$

one may write

$$
\begin{equation*}
\mathbf{P}\{A B\} P_{a b b} P_{b b a b} P_{b b a b a}=P\{A B\} P_{a b a} P_{a b a b} P_{a b a b b} \tag{8}
\end{equation*}
$$

Since expressions including only antepenultimate unit effects are sought, it follows that

$$
\begin{equation*}
P_{b b a b a}=P_{b a b a} \tag{9}
\end{equation*}
$$

and

$$
\begin{equation*}
P_{a b a b b}=P_{b a b b} \tag{10}
\end{equation*}
$$

We obtain

$$
\begin{equation*}
\mathbf{P}_{a b b} P_{b b a b} P_{b a b a}=P_{a b a} P_{a b a b} P_{b a b b} \tag{11}
\end{equation*}
$$

Since

$$
\begin{gather*}
\mathbf{P}_{a b a}=1-P_{a b b} \tag{12}\\
\frac{P_{a b b}}{1-P_{a b b}}=\frac{P_{a b a b} P_{b a b b}}{\mathbf{P}_{b b a b} P_{b a b a}} \tag{13}\\
P_{a b b}=\frac{P_{a b a b} P_{b a b b}}{\mathbf{P}_{b b a b} P_{b a b a}+P_{a b a b} P_{b a b b}} \tag{14}
\end{gather*}
$$

Similarly, starting with

$$
\begin{gather*}
\mathbf{P}\{\mathbf{A A B A B}\}=\mathbf{P}\{\mathbf{B A B A A}\} \tag{15}\\
\mathbf{P}\{\mathbf{A A B}\} \mathbf{P}_{\text {aaba }} \mathbf{P a a b a b}=\mathbf{P}\{\mathbf{B A}\} \mathbf{P}_{\text {bab }} \mathbf{P}_{\text {baba }} \mathbf{P}_{\text {babaa }} \tag{16}
\end{gather*}
$$

Since

$$
\begin{equation*}
\mathbf{P}\{\mathbf{A A B}\}=P\{B A A\} \tag{17}
\end{equation*}
$$

we may write

$$
\begin{align*}
P\{B A\} P_{b a a} P_{a a b a} P_{a a b a b} & =P\{B A\} P_{b a b} P_{b a b a} P_{b a b a a} \tag{18}\\
P_{b a a} P_{a a b a} P_{a b a b} & =P_{b a b} P_{b a b a} P_{a b a a} \tag{19}
\end{align*}
$$

It follows that

$$
\begin{equation*}
\mathrm{P}_{\mathrm{baa}}=\frac{\mathrm{P}_{\mathrm{baba}} \mathrm{P}_{\mathrm{abaa}}}{\mathrm{P}_{\mathrm{a} a b a} \mathrm{P}_{\mathrm{abab}}+\mathrm{P}_{\mathrm{baba}} \mathrm{P}_{\mathrm{abaa}}} \tag{20}
\end{equation*}
$$

Substituting $\mathrm{P}_{\mathrm{abb}}$ and $\mathrm{P}_{\mathrm{baa}}$ from Eqs. (14) and (20), respectively, and

$$
\begin{align*}
& P_{a a b}=\frac{P_{a a a b}}{P_{a a a b}+P_{b a a a}} \tag{21}\\
& P_{b b a}=\frac{P_{b b b a}}{P_{b b b a}+P_{a b b b}} \tag{22}
\end{align*}
$$

from Refs. 1 and 3 into Eqs. (1) and (2) we obtain

$$
\begin{align*}
& P_{a b}=1+\frac{1+\frac{P_{a b b b}}{P_{b b b a}}}{1+\frac{P_{a a b a} P_{a b a b}}{P_{b a b a} P_{a b a a}}} \tag{23}\\
& P_{b a}=1+\frac{1+\frac{P_{b a a a}}{P_{\text {aab }}}}{1+\frac{P_{\text {Pbab }} P_{b a b a}}{P_{a b a b} P_{b a b b}}} \tag{24}
\end{align*}
$$

Since

$$
\begin{equation*}
\frac{\mathbf{P}\{\mathbf{A}\}}{\mathbf{P}\{\mathbf{B}\}}=\frac{\mathbf{P}_{\mathrm{ba}}}{\mathbf{P}_{\mathrm{ab}}} \tag{25}
\end{equation*}
$$

we obtain on substitution

$$
\begin{equation*}
\frac{\mathrm{P}\{\mathrm{~A}\}}{\overline{\mathrm{P}\{\mathrm{~B}\}}}=\frac{1+\frac{1+\frac{\mathrm{P}_{\mathrm{baaa}}}{\mathbf{P}_{\text {aab }}}}{1+\frac{\mathrm{P}_{\mathrm{bbab}} \mathrm{P}_{\mathrm{baba}}}{\overline{\mathbf{P}_{a b a b} \mathrm{P}_{\mathrm{babb}}}}}}{1+\frac{1+\frac{\mathrm{P}_{\mathrm{abbb}}}{\mathrm{P}_{\mathrm{bbba}}}}{1+\frac{\mathrm{P}_{\mathrm{aaba}} \mathrm{P}_{\mathrm{abab}}}{\mathrm{P}_{\mathrm{baba}} \mathrm{P}_{\mathrm{abaa}}}}} \tag{26}
\end{equation*}
$$

Expressed in terms of reacting monomer concentrations and monomer reactivity ratios [1] we obtain an interesting simplification

$$
\begin{equation*}
\frac{\mathbf{P}\{\mathbf{A}\}}{\mathbf{P}\{B\}}=\frac{1+\frac{1+\frac{r_{1}{ }^{\prime} x\left(r_{1} x+1\right)}{r_{1}{ }^{\prime} x+1}}{1+\frac{\mathbf{x}\left(r_{1}{ }^{\prime \prime} x+1\right)}{r_{2}{ }^{\prime \prime}\left(r_{1}{ }^{\prime \prime} x+1\right.}}}{1+\frac{1+\frac{r_{2}\left(r_{2} / x+1\right)}{x^{\prime}\left(r_{2}{ }^{\prime} / x+1\right)}}{1+\frac{r_{2}{ }^{\prime \prime} / x+1}{r_{1}{ }^{\prime \prime} x\left(r_{2}{ }^{\prime \prime \prime} / x+1\right)}}} \tag{27a}
\end{equation*}
$$

CONVENTIONS

$$
\begin{aligned}
& \mathrm{P}_{\mathrm{aaab}}=1 /\left(\mathrm{r}_{1} \mathrm{x}+1\right) \\
& \mathrm{P}_{\mathrm{baaa}}=\mathrm{r}_{1}{ }^{\prime} \mathrm{x}^{\prime} /\left(\mathrm{r}_{1}{ }^{\prime} \mathrm{x}+1\right) \\
& \mathrm{P}_{\mathrm{bbab}}=1 /\left(\mathrm{r}_{1}{ }^{\prime \prime \prime} \mathrm{x}+1\right) \\
& \mathrm{P}_{\mathrm{baba}}=1 /\left(\mathrm{r}_{2}{ }^{\prime \prime} / \mathrm{x}+1\right) \\
& \mathrm{P}_{\mathrm{abab}}=1 /\left(\mathrm{r}_{1}{ }^{\prime \prime} \mathrm{x}+1\right) \\
& \mathrm{P}_{\mathrm{abbb}}=\left(\mathrm{r}_{2}{ }^{\prime} / \mathrm{x}\right) /\left(\mathrm{r}_{2}{ }^{\prime} / \mathrm{x}+1\right) \\
& \mathrm{P}_{\mathrm{bbba}}=1 /\left(\mathrm{r}_{2} / \mathrm{x}+1\right) \\
& \mathrm{P}_{\mathrm{ab}}=1 /\left(\mathrm{r}_{2}{ }^{\prime \prime \prime} / \mathrm{x}+1\right)
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{r}_{1}=\mathrm{k}_{\mathrm{aaaa}} / \mathrm{k}_{\mathrm{aaab}} \\
& \mathrm{r}_{1}{ }^{\prime}= \mathrm{kbaaa} / \mathrm{k}_{\mathrm{baab}} \\
& \mathrm{r}_{1}{ }^{\prime \prime}=\mathrm{k}_{\mathrm{abaa}} / \mathrm{k}_{\mathrm{ab} a b} \\
& \mathrm{r}_{1}{ }^{\prime \prime \prime}=\mathrm{kbbaa} / \mathrm{k}_{\mathrm{bbab}} \\
& \mathrm{r}_{2}=\mathrm{kbbbb} / \mathrm{k}_{\mathrm{bbba}} \\
& \mathrm{r}_{2}^{\prime}=\mathrm{k}_{\mathrm{abbb}} / \mathrm{k}_{\mathrm{abba}} \\
& \mathrm{r}_{2}{ }^{\prime \prime}= \mathrm{k}_{\mathrm{babb}} / \mathrm{k}_{\mathrm{baba}} \\
& \mathrm{r}_{2}{ }^{\prime \prime \prime}=\mathrm{k}_{\mathrm{aabb}} / \mathrm{k}_{\mathrm{aaba}} \\
& \mathrm{x}= \mathrm{A} / \mathrm{B} \text { (unreacted } \\
& \text { monomers) }
\end{aligned}
$$

It only remains to estimate the degree of over-simplification involved in the use [1] of

$$
\begin{equation*}
P_{b a a}=\frac{1}{1+\frac{P_{a b a b}}{P_{\text {bbaa }}}} \tag{27}
\end{equation*}
$$

for example, in lieu of

$$
\begin{equation*}
P_{b a a}=\frac{1}{1+\frac{P_{a b a a} P_{a b a b}}{\mathrm{P}_{b a b a} P_{a b a a}}} \tag{14}
\end{equation*}
$$

and similarly for $\mathrm{P}_{\mathrm{abb}}$. It may be shown that the difference is no greater than the limitation to a penultimate unit effect in two of the four governing probabilities, $\mathrm{P}_{\mathrm{baa}}$ and $\mathbf{P}_{\mathrm{abb}}$. Equations (27) and (14) reduce to the same equation in these circumstances

$$
\begin{equation*}
P_{b a a}=\frac{1}{1+\frac{\mathrm{P}_{\mathrm{bab}}}{\bar{P}_{\mathrm{baa}}}} \tag{28}
\end{equation*}
$$

Actually, the difference is probably much less than indicated above. It may be shown by equating the right sides of Eqs. (27) and (14) and simplifying as shown

$$
\begin{align*}
& \frac{1}{1+\frac{\mathrm{P}_{\text {abab }}}{\mathrm{P}_{\text {bbaa }}}}=\frac{1}{1+\frac{\mathrm{P}_{\text {abaa }} \mathrm{P}_{a b a b}}{\mathrm{P}_{\text {baba }} \mathrm{P}_{\text {abaa }}}} \tag{29}\\
& P_{b a b a} P_{a b a a}\left(P_{b b a a}+P_{a b a b}\right)=\left(P_{b a b a} P_{a b a a}+P_{a b a} P_{a b a b}\right) P_{b b a a} \tag{30}\\
& \mathrm{P}_{\text {baba }} \mathrm{P}_{\text {abaa }}=\mathbf{P}_{\text {abab }} \mathrm{P}_{\text {bbaa }} \tag{31}
\end{align*}
$$

that the only condition necessary is for this proportionality to hold

$$
\begin{equation*}
\frac{P_{b a b a}}{P_{a b a}}=\frac{P_{\text {bbaa }}}{P_{\text {Pbaa }}} \tag{32}
\end{equation*}
$$

Thus, B in the antepenultimate position must have the same effect relative to A whether followed by AB or BA.

REFERENCES

[1] G. E. Ham, J. Polym. Sci., 45, 169, 177 (1960); Ibid., Part A-2, 2, 2735 (1964).
[2] F. P. Price, J. Chem. Phys., 36, 209 (1962).
[3] K. Ito and Y. Yamashita, J. Polym. Sci., Part A-2, 3, 2165 (1965).
[4] C. W. Pyun, J. Polym. Sci., Part A-2, 8, 1111 (1970).
Accepted by editor August 3, 1970
Received for publication September 1, 1970

